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Abstract

Faced with the challenge of saving as much diversity as possible given financial and
time constraints, conservation biologists are increasingly prioritizing species on the
basis of their overall contribution to evolutionary diversity. Metrics such as EDGE
(Evolutionary Distinct and Globally Endangered) have been used to set such evolu-
tionarily based conservation priorities for a number of taxa, such as mammals, birds,
corals, amphibians, and sharks. Each application of EDGE has required some form of
correction to account for species whose positions within the tree of life are unknown.
Perhaps the most advanced of these corrections is phylogenetic imputation, but to date
there has been no systematic assessment of both the sensitivity of EDGE scores to a
phylogeny missing species, and the impact of using imputation to correct for species
missing from the tree. Here, we perform such an assessment, by simulating phyloge-
nies, removing some species to make the phylogeny incomplete, imputing the position
of those species, and measuring (1) how robust ED scores are for the species that are
not removed and (2) how accurate the ED scores are for those removed and then
imputed. We find that the EDGE ranking for species on a tree is remarkably robust to
missing species from that tree, but that phylogenetic imputation for missing species,
while unbiased, does not accurately reconstruct species’ evolutionary distinctiveness.
On the basis of these results, we provide clear guidance for EDGE scoring in the face
of phylogenetic uncertainty.

Introduction

Evidence from the fossil record and present-day studies argue
we are in the midst of, or entering, a sixth mass extinction
(Barnosky et al., 2011; Ceballos et al., 2015), such that more
populations than ever are declining and species face height-
ened danger of extinction (Thomas et al., 2004; Wake &
Vredenburg, 2008). Habitat destruction (Brooks et al., 2002),
invasive species (Molnar et al., 2008), climate change (Pounds
et al., 2006), and disease (Lips et al., 2006) are some of the
leading causes of species declines globally. Conservation
biologists seek to reduce these detrimental effects on species
populations, but in reality they have limited resources with
which to do so. This challenge, termed the ‘Noah’s Ark prob-
lem’ (Weitzman, 1998), has driven conservation biologists to
identify different ways by which to prioritize, or triage, their
resource allocation (Bottrill et al., 2008).

Conservation triage, like all sound decision-making,
requires a method to quantify the relative urgency or impor-
tance for conservation among a set of options. This allows
scientists and policy-makers to use data to quantify need and
inform conservation decision-making and management activi-
ties. One triage strategy uses the EDGE metric to identify

and prioritize species that are Evolutionarily Distinct and
Globally Endangered (Isaac & Pearse 2018). Evolutionary
Distinctiveness (ED) measures the relative contributions
made by each species within a particular clade to phyloge-
netic diversity, assigning each branch length equally to all
the subtending species (Redding, 2003; Isaac et al., 2007).
Global Endangerment (GE), assigns numerical values to each
of the International Union for Conservation of Nature
(IUCN) Red List Categories. As species become increasingly
threatened and are placed into categories of increasing con-
cern (e.g. from Vulnerable to Endangered), the GE numerical
value increases. A species’ EDGE score is an aggregate
value intended to equally reflect a species’ evolutionary dis-
tinctiveness and conservation status (even if it does not
always in practice; see Pearse et al., 2015).

Usage of the EDGE metric has expanded greatly. First
used to prioritize global mammals (Isaac et al., 2007),
EDGE scores are now available for a variety of taxonomic
groups, including amphibians (Isaac et al., 2012), birds (Jetz
et al., 2014), corals (Curnick et al., 2015), squamate reptiles
(Tonini et al., 2016), sharks (Stein et al., 2018), and all tet-
rapods (Gumbs et al., 2018). Related metrics are also now
available, each subtly emphasizing different things, such as
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the expected contribution of each species to future phyloge-
netic diversity (HEDGE and I-HEDGE; Steel, Mimoto &
Mooers, 2007; Jensen et al., 2016) and our uncertainty over
a species’ future (EDAM; Pearse et al., 2015). The develop-
ment and expansion of EDGE-like metrics mirrors progress
in other areas of conservation biology, and the likelihood of
success in conservation (McBride et al., 2007; Wilson et al.,
2007), the relative cost of certain interventions (Naidoo
et al., 2006), and complementarity of interventions (Pressey
et al., 1993; Myers et al., 2000) can now be considered in
its calculation (Isaac & Pearse 2018). The EDGE index was
developed explicitly with the intention of informing conser-
vation triage, and is now the basis of the global EDGE of
Existence Program (http://www.edgeofexistence.org/). The
successful application of EDGE highlights the potential for
phylogenetic conservation prioritization metrics to provide
actionable insights while quantitatively measuring the evolu-
tionary history represented by a species. Nonetheless, almost
every application of an EDGE-type approach must address
uncertainty resulting from missing data. Addressing, and
hopefully improving, our ability to handle uncertainty should
be a continual effort to increase the support for such
approaches. However, in an effort to delineate between science
and policy, it is important to note that the implications of miss-
ing data on policy making will vary depending upon the
demands and goals of a particular person or organization.

Missing data can affect EDGE scores in several ways. First,
the IUCN identifies some species as Data Deficient (IUCN,
2001, 2008), which affects the GE component of a species’
EDGE score. Fortunately, the IUCN provides guidance for
using any available contextual data to assign some threat status
to such species. A number of studies illustrate how to assign
threat categories to Data Deficient species, which in turn should
reduce the uncertainty in GE (Good, Zjhra & Kremen, 2006;
Butchart & Bird, 2010; Morais et al., 2013; Dulvy et al.,
2014). The issue of missing phylogenetic data is arguably more
complicated because not only does the focal species have no
ED score, but its absence from the phylogeny may affect the
ED scores of related species. Species of conservation concern
are almost by definition rare, and frequently lack sufficient
DNA (or even morphological) data to be placed with certainty
on a phylogeny. In most cases, taxonomic information rather
than sequence data alone has been used to place species in the
tree of life when constructing EDGE lists (see Isaac et al.,
2007, 2012; Collen et al., 2011; Jetz et al., 2014; Curnick
et al., 2015; Forest et al., 2018; Gumbs et al., 2018; Stein
et al., 2018). Yet, to the best of our knowledge, there has been
no systematic study of the effect of imputation on species’
EDGE scores, despite this practice having received attention in
other areas of comparative biology (Kuhn, Mooers & Thomas,
2011; Thomas et al., 2013; Rabosky, 2015). Thus, we do not
know how accurate EDGE scores are when species are missing,
or when species are added to phylogenies by imputation, nor
do we know how accurate EDGE scores for imputed species
might be. As interest in using EDGE-type measures and phylo-
genies for conservation triage grows, the need for consensus on
how to resolve cases of phylogenetic uncertainty becomes
increasingly urgent.

Here, we attempt to quantify the effect of one sort of phy-
logenetic uncertainty—the effect of missing species on
EDGE rankings—and assess the degree to which subsequent
imputation affects the accuracy of EDGE scores. We do so
by simulating phylogenies and then removing species either
at random, or with bias, across those phylogenies. By con-
trasting the ED scores of the species before and after the
loss of other species from the phylogenies, we measure the
impact of missing species on ED scores. We then assess the
extent to which phylogenetic imputation can accurately esti-
mate the EDGE scores of missing species in simulated data.
We also examine the extent to which such imputation affects
the scores of species for which we have data. In doing so,
we hope to provide clear guidance as to the applicability of
phylogenetic imputation as a solution for species missing
phylogenetic data. From our results, we argue that species’
ED values are remarkably robust to missing species, but that
phylogenetic imputation does not reliably reconstruct the true
ranking of those missing species.

Materials and methods

We use a simulation approach to test the effect of having
missing species on a phylogeny (through species removal
from simulated phylogenies) and then imputing species for
species’ ED (Evolutionary Distinctiveness) scores. We focus
exclusively on the ED-component of the EDGE metric, since
uncertainty in species GE scores has already been addressed
by the IUCN’s proposal to assign Data Deficient species
scores (IUCN, 2001, 2008). Because EDGE is the product
of both ED and GE components, even perfectly accurate GE
values could be associated with imperfect EDGE scores if
the ED scores were inaccurate.

All trees (both starting and imputed) were simulated under
a pure-birth Yule model using ‘gieger::sim.bdtree’ (setting
parameters b = 1 and d = 0; Pennell et al., 2014). This
model was chosen because it is the simplest model possible:
speciation rates are constant across the entire tree of life and
there is no extinction. We suggest that imputation under a
simple model that is identical to that used to simulate the
data is a low, and fair, benchmark for a method to meet.
However, we acknowledge that more complex and/or biologi-
cally realistic models of diversification could potentially affect
the performance of imputation. We used ‘caper::ed.calc’ to
calculate ED values (Orme et al., 2013). All simulations and
analyses were performed using R (version 3.4.0; R Core Team,
2017). We performed 100 replicate simulations of each param-
eter combination. All our analysis code is available online
(https://github.com/bweedop/edgeSims) and in the supplemen-
tary materials.

The impact of missing species on EDGE
scores

Our first set of simulations assess the impact of missing spe-
cies data on the ED scores of remaining species, considering
data missing either in a random or phylogenetically-biased
fashion. We simulated phylogenies of different sizes (number
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of species: 64, 128, 256,. . ., 2048, 4096) and then removed
constant fractions of tips from the tree (0%, 1%, 2%,. . .,
19%,. . ., 99%). To simulate species missing at random
throughout the phylogeny, we used ‘sample’ to select the
relevant fraction of species (rounded to the nearest whole
number) without replacement. To remove species in a phylo-
genetically biased manner, we used Felsenstein (2005)’s
threshold model. We simulated a trait under a constant rate
Brownian-motion model (r = 0.5, starting root value = 1)
(using ‘geiger::sim.char’ Pennell et al., 2014). Species were
then removed from the tree if their simulated trait was in the
upper quantile matching the fraction of species to be
removed. For example, if 10% of species were to be
removed from the tree, the species with the highest 10% of
values would be removed. This results in closely related spe-
cies being removed more often than expected by chance.

To quantify the effect of these manipulations, we calcu-
lated the ED values of species that are not removed from a
tree both before and after removal. We then correlated these
ED scores: if missing species do not affect ED values of the
remaining species, we would expect a strong, positive corre-
lation between the ED scores of the remaining species calcu-
lated before and after species were removed from the
phylogeny. We emphasize that species removed from the
phylogeny are omitted from this comparison. We outline our
approach in Fig. 1.

The impact of phylogenetic imputation on
EDGE scores

Our second set of simulations tested the impact of imputa-
tion on ED scores within an imputed clade. We used rela-
tively small clades (5, 6, 7,. . ., 30, 31, 32 species) from
phylogenies of different sizes [128 (27), 147 (27.2, 168
(27.4),. . ., 776 (29.6), 891 (29.8), 1024 (210) species]. We first
randomly selected a clade to be removed from the ‘true’ tree
and then simulated a new phylogeny of the same size as the

removed clade. This newly simulated clade was generated
under the same pure-birth model as the original phylogeny.
We then placed the newly simulated clade in the full phy-
logeny, in the same location as the removed clade. If a
newly simulated clade was so old that it was not possible to
graft it into place, we discarded that clade and simulated
another. In an empirical study the model of evolution under
which the phylogeny had evolved would have to be esti-
mated, which is an additional source of error not considered
here. We simulated each combination of clade and total phy-
logeny sizes 100 times when using a pure-birth Yule model
and 5 times when simulating under models with past extinc-
tion. An overview of our approach is given in Fig. 2.

To assess whether clades, once imputed, had similar ED
scores to their true values, we correlated the imputed ED
scores with the true ED scores. We also calculated the sum
of the absolute change in ranked ED for all species, which
is particularly relevant for EDGE-listing as conservation
actions are often focused around the top 100, 200, etc., spe-
cies. Moreover, the correlation of imputed and real scores
are bounded by the depth of the imputed clade, and therefore
a high correlation could still produce inaccurate imputed
scores, and a low correlation could still not be important
(e.g. they could be anticorrelated but only differ in rank by
a maximum of the size of the subclade). We modeled both
of these metrics (the change in ranking and the correlation)
as a function of a number of potential explanatory variables.
Specifically, we included in our models: the estimated specia-
tion rate of the original phylogeny (using ‘ape::yule’; Paradis,
Claude & Strimmer, 2004), the sum of all phylogenetic
branch-lengths in the original phylogeny (Faith’s PD; Faith,
1992), the sum of all phylogenetic branch-lengths in the origi-
nal focal clade (Faith’s PD; Faith, 1992), the value of c in the
original phylogeny (using ‘phytools::gammatest’; Pybus &
Harvey, 2000; Revell, 2012), Colless’ index of the original
phylogeny (using ‘apTreeshape::as.treeshape’; Colless, 1982;
Bortolussi et al., 2009), the kurtosis of species’ ED values in
the original phylogeny (using ‘moments::kurtosis’; Komsta &
Novomestky, 2015), the skew of species’ ED values in
the original phylogeny (using ‘moments::skew’; Komsta &
Novomestky, 2015), the total number of species in the original
phylogeny, the total number of species within the imputed
clade, and the depth (age) of the imputed clade in the
phylogeny. Although the expectations of many of these
explanatory variables are known for Yule trees, in each simu-
lation they are expected to vary somewhat by chance.

Recently, there has been interest in assigning missing spe-
cies the mean ED score of the most exclusive clade which
contains the species (see Gumbs et al., 2018). To test the
efficacy of such methods, we assigned the average ED of
the selected clade to each of its species and calculated (as
above) the mean change in absolute ranking under this
scheme. Note that we could not correlate ED scores (as we
do above), since such a correlation would require variation
in species’ scores and under this approach a single score
(the mean ED) is assigned to all imputed species.

We present, in the supplementary materials, two additional
sets of analyses intended to examine the impact that past

Figure 1 Conceptual overview of the missing-species simulations

in this study. The simulated tree on the left is the true tree prior to

removal of missing species. On the right is the same tree after

missing species have been removed. Species that are removed are

shown in red. To compare the ED values of the remaining species,

we correlate their ED values before (left) and after (right) removal

of the missing species. Dashed lines can be seen for the species

which would have ED scores compared.
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extinction rates may have played on our analyses. These
simulations incorporate conditions of past extinction at low
and high rates using ‘gieger::sim.bdtree’ (setting parameters
for low extinction at b = 1 and d = 0.5 and high extinction
b = 1 and d = 0.95; Pennell et al., 2014). These models rep-
resent large departures from our main simulations (which
have b = 1 and d = 0), and so we performed only five repli-
cates per set of parameter combinations as our only aim was
to detect any major differences in our results stemming from
these changes. Otherwise, these simulations were identical to
those we present in the main text.

Results

We asked how robust ED scores were for species with known
positions on the phylogeny, when other species were missing
from the phylogeny. Indeed, when there were increasing

numbers of missing species, ED scores for the remaining spe-
cies’ became less accurate (Table 1; Fig. 3). When species
were missing from the tree in a phylogenetically biased fash-
ion, ED values were less robust as compared to when species
are randomly missing from the tree. However, the effect of
missing species is not necessarily severe; even if 20% of spe-
cies are missing from the tree, the average correlation coeffi-
cient between true and estimated ED scores for the remaining
species is 0.88 and 0.94 for phylogenetically biased and ran-
dom missing species, respectively.

We also considered the impact of imputation on the accu-
racy of ED scores for imputed species. When clades were
imputed on the tree, we found a weak (if any) average posi-
tive correlation between the imputed ED and true ED values
for species within the imputed clades (overall mean correla-
tion of 0.197 in a statistical model with an r2 of 0.5%;
Fig. 4, Table 2). We also found no explanatory variables that

Figure 2 Conceptual overview of the imputation simulations conducted in this study. The simulated tree on the left is the ‘true tree’. We

selected a clade to treat as ‘missing’ (highlighted with a dashed line and in blue) by treating it as a polytomy (middle panel), and then

imputed the ‘missing’ species to produce the imputed clade in the right panel. To compare true and imputed ED values within the imputed

clade, we correlated ED values calculated for the true clade (left) with those for the imputed clade (right).

Table 1 Statistical model of the effect of missing data on the accuracy of the remaining species’ ED values

Estimate Std. Error t value Pr(>|t|)

Reference—Phylogenetically biased

Intercept

1.0315 0.0013 821.39 <0.0001

Fraction of species removed �0.4696 0.0020 �233.16 <0.0001

Number of species overall 2.500 9 10�6 2.984 9 10�7 7.89 <0.0001

Contrast—Random

Intercept

0.0630 0.0018 35.47 <0.0001

Fraction of species removed �0.2774 0.0028 �97.45 <0.0001

Number of species overall 5.013 9 10�6 4.219 9 10�7 �4.38 <0.0001

Results of a multiple regression fit to the data shown in Fig. 3, regressing the correlation coefficient of (remaining) species’ ED scores

before and after other species were removed from the phylogeny (F139696,5 = 40,350, r2 = 0.5908, P < 0.0001). We emphasize that these

are simulated data, and so, as the extremely large sample sizes are likely driving the low standard errors of the model terms, we encourage

the reader to focus on the magnitudes of the effects and the overall variance explained by our model (r2 = 0.5908).The first three rows refer

to the overall intercept, effect of the fraction of species removed from the phylogeny, and the overall size of the phylogeny when species

were removed in a phylogenetically biased fashion. The last three rows are contrasts, reporting whether there is a difference in each coeffi-

cient when the simulations were conducted with random, or phylogenetically biased, species loss. The correlation of ED scores appears

affected by an interaction between the number of species removed from the tree and whether those species were removed at random or

in a phylogenetically biased fashion. The overall size of the phylogeny has little discernible effect, and its statistical significance is likely dri-

ven by the large number of simulations we performed (139,700).
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explained significant variation in this relationship (Table 2;
see Appendix S1). However, we did find evidence that,
when imputing larger clades, the variation in the correlation
between true and imputed ED scores decreases, although we
emphasize the effect is weak (see Table 2). When consider-
ing rankings rather than raw scores, we found that imputa-
tion can introduce sizable error into the estimation of
species’ ED values (Fig. 5 and Table 3). This ranking error
increased with the size of the imputed clade and phylogeny
(Table 3), and can affect ranking error within the top 100
and 250 species (see Appendix S2). To give an example of
the magnitude of the effect, within a phylogeny of 1024 spe-
cies, the members of an imputed clade of 30 species are, on
average, �315 rankings from their true rankings. We found
similar effects in ranking error when using the average ED
value of clade for a missing species (see Appendix S3). As
we show in the supplementary materials, the simulation (and
subsequent imputation) of phylogenies under models incor-
porating extinction rates (i.e., not Yule models) had qualita-
tively identical results. We do not, therefore, discuss them in
detail here.

Discussion

Phylogenies are playing an increasing role in conservation pri-
oritization, decision-making, and policy (V�ezquez &

Gittleman, 1998; Veron et al., 2017). An obstacle to a more
widespread adoption of phylogenetic prioritization methods
such as EDGE is phylogenetic uncertainty (Isaac & Pearse
2018). There is a tension between a purported need to make
decisions to preserve biodiversity—including evolutionary his-
tory—now, and the reality that we rarely have complete infor-
mation about the phylogenetic placement of many species of
conservation concern. The intention of our study is to provide

Figure 3 Effect of missing data on the calculation of the remaining

species’ ED values. The correlation coefficient of species’ ED val-

ues in full (simulated) phylogenies, comparing values before and

after the random loss of (other) species from the tree. The color of

data points denote whether the species were removed from the

phylogeny completely at random (orange) or in a phylogenetically

biased fashion (see text; grey). Lines show regressions for random

(red) or phylogenetically biased (black) species loss; see Table 1 for

model coefficients. This plot shows that the accuracy of estimation

of ED values is inversely proportional to the number of species

missing from the phylogeny, and that phylogenetically biased spe-

cies loss has a greater impact on accuracy.

Figure 4 The correlation between species’ imputed and true ED

scores plotted as a function of the number of species imputed

(focal clade size from all sizes of phylogenies used

[n = 128, . . ., 1024)]. Each data point represents the correlation

between ED values within the focal clades where imputation has

occurred, comparing species’ true ED values with their imputed ED

values. This plot, and the statistical analysis of it in Table 2, show

limited support for an association between true and imputed ED

values.

Table 2 Statistical model of the potential drivers of the correlation

between imputed and true ED values

Estimate Std. Error t value Pr(>|t|)

Intercept 0.1974 0.0501 3.94 0.0001

Size of focal clade �0.0036 0.0005 �7.60 <0.0001

Size of phylogeny 0.0001 0.0001 0.60 0.5497

PD �0.0001 0.0001 �0.64 0.5241

Estimated speciation rate �0.0199 0.0493 �0.40 0.6865

Colless’ index �0.0000 0.0000 �0.08 0.9380

Skew 0.0022 0.0083 0.27 0.7885

Kurtosis �0.0001 0.0008 �0.16 0.8736

Depth of imputed clade 0.0006 0.0005 1.27 0.2045

Results of a multiple regression fitted to the data shown in Fig. 4,

showing a relatively weak correlation between imputed and true ED

scores (F44791,8 = 29.1, r2 = 0.005, P < 0.0001). Given the extre-

mely low predictive power of this statistical model we are reticent

to make strong claims about drivers of the correlation between

imputed and observed ED. Each coefficient refers to a measured

variable in our simulations, as described in the text.
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concrete information about the impact of one source of phylo-
genetic uncertainty – missing species – on conservation priori-
tization. To address this uncertainty, we examined two key
issues: (1) the extent to which species that are missing from the
tree of life impact the ED scores of species for which we do
have data, and (2) the extent to which phylogenetic imputation
can accurately estimate ED scores for taxa with no phyloge-
netic data. First, we found that missing species had a surpris-
ingly small impact on the ED scores of other species,
particularly if species are missing at random from the tree of
life. Second, we found that phylogenetic imputation generally
fails to accurately reconstruct species’ ED scores and rankings.

In this study, we have examined imputation under three
separate models of diversification: pure-birth Yule models
(presented in the main text), and models with relatively high
and low rates of extinction (both in the Supporting

Information). We acknowledge that lineages evolve in more
complex ways, although we suggest that focusing on these
fundamental models of diversification makes our results more
broadly applicable. We suggest that a method should perform
well under basic conditions, and as such these results form an
appropriate benchmark, particularly given we can see no rea-
son to suppose that more complex models should increase
model performance. Furthermore, we focus here solely on the
results from a single imputation in each simulation, despite,
empirically, biologists reporting average ED scores calculated
across pseudo-posterior distributions of many imputed phylo-
genies (Kuhn et al., 2011). Thus, our results show that the
variation within these pseudo-posterior distributions is likely
very large. It is well-known that such imputation methods are
not biased (indeed, this was originally shown by Kuhn et al.,
2011): here we emphasize that the uncertainty they introduce
is sufficiently large such that they may be less informative
than previously has been thought.

Conservation prioritization and triage have been controver-
sial: to some triage represents an unacceptable defeat by
accepting that some species will go extinct (Jachowski & Kes-
ler, 2009; Parr et al., 2009), while to others it is either efficient
resource allocation or a grim necessity (Bottrill et al., 2008).
The debate over the implications of triage, both philosophically
and practically, is an important one, but this study does not
address it. Conservation biology has been described as a crisis
discipline where it is often necessary to act with imperfect
information and, ultimately, tolerate and manage uncertainty
(Soul�e, 1985). Our intention here is to shine a light on how
phylogenetic uncertainty and imputation can impact species’
ED(GE) scores. While we are strong advocates for EDGE-style
approaches to conservation prioritization, we do believe that
any triage method must weigh the pros and cons of its metho-
dology, and we should constantly improve the robustness of
our method for themselves.

ED scores are relatively robust to missing
species

Missing species and poor phylogenetic resolution have been
identified as causes of uncertainty when calculating ED
(Isaac et al., 2007), but we were unable to find a quantita-
tive assessment of how missing species might affect ED val-
ues of species for which data are available. Empirically in
corals and gymnosperms, incomplete phylogenies produced
results similar to later, more complete trees (Curnick et al.,
2015; Forest et al., 2018). Our results support this finding.
Indeed, our analysis suggests that, on average (and we
emphasize that there is a good amount of variation about
that average; see Fig. 3), a phylogeny missing 20% of spe-
cies at random will still have ED scores for the remaining
species that are strongly correlated (mean correlation
coefficient = 0.94) with the true ED scores.

We did find that missing species are more problematic
when those species are non-randomly distributed across the
phylogeny. Our simulations do not examine extreme phyloge-
netic patterning, such as if an entire clade were missing. This
is notable because monophyletic clades that are geographically

Figure 5 Mean ranking error of imputed species. An interpolated

heat-map of the mean ranking error of imputed species as a func-

tion of the total number of species in the phylogeny (vertical axis)

and number of species in the focal (imputed) clade (horizontal axis).

Table 3 gives statistical support for the trend shown in this figure

of increased error in larger phylogenies and imputed clades.

Table 3 Statistical model of the effect of clade and phylogeny size

on ranking error

Estimate Std. Error t value Pr(>|t|)

Intercept �1.6344 0.0332 �49.29 0.0001

Size of (imputed) clade 0.0900 0.0010 91.22 <0.0001

Size of phylogeny 0.5179 0.0013 383.99 <0.0001

Model of the raw data underlying Fig. 5, regressing the ranking error

of imputed species against the number of species in the imputed clade

and the size of the entire phylogeny (F47997,2 = 77890, r2 = 0.7644,

P < 0.0001). As can be seen in Fig. 5, the average ranking error is

positively correlated with the size of the clade being imputed and the

entire phylogeny. Square-root transformations were applied to both

ranking error and size of phylogeny prior to fitting this model.
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restricted to difficult-to-reach regions are both difficult to
sequence and not uncommon (as is seen with 27 coral species
in the Indian Ocean; Arrigoni et al., 2012). We also do not
attempt to comprehensively simulate all of the different ways
in which species could be missing from a phylogeny. We
emphasize that we have not demonstrated, and do not argue,
that missing species cannot affect ED scores. We simply
demonstrate that, compared to a scenario in which species are
missing at random, phylogenetically patterned missing species
can have a greater effect on the ED scores of species for
which we have data, and that (in our opinion) ED scores are
remarkably robust to missing species. Other patterns and sce-
narios for species to be missing could easily lead to systematic
biases of ED scores, and so every effort should be made to
gather accurate phylogenetic information for all species within
a clade before prioritization is carried out.

Imputation does not reconstruct the ED
values of missing species with great
precision

Our results show that neither imputation (Figs 4 and 5), nor
clade-averages of ED (see Appendix S3), accurately recover
the true ED values or the true ED rank of missing species.
Thus we argue that, even though imputation allows missing
species to be incorporated into EDGE lists, their associated
EDGE scores may not accurately reflect their true scores.
We acknowledge these are averages and may change
depending on the particular phylogeny, but we can find no
statistically significant predictors of that variation.

While we did not assess clades with fewer than five spe-
cies (we do not consider correlations or averages to be reli-
able with so few data-points), we cannot think why smaller
clades would necessarily be more reliable (and this would
require a large deviation from the trend in Fig. 4). Indeed, in
the smallest possible clade (two species), imputation is
essentially sampling a terminal branch length from an expo-
nential distribution (Kuhn et al., 2011); such a process
should still lead to a great deal of uncertainty.

It is, perhaps, unsurprising that imputed ED values do not
correlate with their true values (see Fig. 4), but we were sur-
prised at the degree of ranking error. Indeed, larger phyloge-
nies showed greater ranking error; we na€ıvely would have
expected the opposite. We would expect the upper bound on
the age of the imputed clade, which should have expected
be relatively younger in larger phylogenies, would partially
control the range of the ranks for the imputed species. ED is
known to be driven mostly by terminal branch length (Isaac
et al., 2007; Steel et al., 2007; Redding et al., 2008); our
results therefore emphasize this.

Imputation is not the only way to incorporate missing spe-
cies into EDGE-like frameworks (see Collen et al., 2011;
Gumbs et al., 2018), but it is likely the most common.
3,330 of the birds (� 30%; Jetz et al., 2014), 250 of the
mammals (� 5.6%; Collen et al., 2011), and 610 of the
sharks (� 49%; Stein et al., 2018) in recent EDGE lists
were imputed. It is well-known that phylogenetic imputation
can cause biases in other statistical methods, such as the

estimation of evolutionary phylogenetic signal (Rabosky,
2015). We emphasize that we are not suggesting that imputa-
tion biases ED scores: we are, instead, suggesting that it is
less precise than has previously been acknowledged.

Guidelines for the use of imputation

The impact of imputation on EDGE scores is almost cer-
tainly less than its impact on ED scores, because EDGE
scores are a product of both ED and IUCN status (‘GE’).
However, the goal of EDGE-like measures is to incorporate
phylogeny, and if imputed EDGE scores are driven by their
GE component because of uncertainty introduced by imputa-
tion, this essentially creates another metric of IUCN status.
With this in mind, we hope to provide clear guidelines,
along with the benefits and drawbacks, when using imputa-
tion in EDGE-based approaches to scientists and policy mak-
ers. Our results further suggest that incomplete phylogenies
can be used to estimate ED scores with remarkably high
degrees of accuracy. Instead of using imputation to account
solely for the relatively minor impact of missing species, we
suggest that conservation biologists should address the phy-
logenetic uncertainty of species for which they have data.
While we have not explored this uncertainty here, evolution-
ary biologists commonly work with distributions of trees
generated from genetic data (reviewed in Huelsenbeck et al.,
2001; Bollback, 2005), since the precise topology and dating
of a phylogeny is almost always uncertain. This uncertainty
has, indeed, already been shown to affect EDGE scores and
rankings (Pearse et al., 2015). If biologists are concerned about
the impact of missing species on known species’ ED (GE)
scores we see no harm in being precautionary and using
imputation. It is important, however, to address known sources
of potential error, and so we would encourage biologists to
incorporate uncertainty in species with phylogenetic data as a
priority.

Our results suggest that prioritizing species whose phylo-
genetic structure has been imputed should be done with
extreme care, if at all. In the case that an species is imputed
to be below a threshold set for conservation (most EDGE
studies focus on the ‘top 100’ species or something similar),
then the path forward is clear: that species should not have
conservation funds allocated to it at this time. The case
where a species, on average, passes a threshold is more com-
plex, but the theory underlying imputation can give some
guidance. Imputed distributions of trees essentially represent
Bayesian posterior distributions (Kuhn et al., 2011), and so
the 95% posterior densities of these distributions’ ED values
represent a range within which we can be 95% certain the
true ED scores lie (if the model assumptions are met). Thus,
we suggest that conservation action should only be initiated
for a species if there is a 95% (or 80%, or whatever confi-
dence is deemed appropriate) probability that it is above that
threshold. For example, a species whose ranking is estimated
to have a 20% probability of being between the 1st and
100th highest-ranked species could not, with confidence, be
called a top-100 species. Our results suggest that, on aver-
age, very few imputed species would meet such a criterion.
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Regardless, the calculations of such probabilities is trivial
with the data users of imputation have in hand already.

Ultimately, we are currently fighting a losing battle to pre-
serve the tree of life. Our results are good news: they sug-
gest that we can start right away using the (incomplete)
phylogenies we already have. The effect of missing species
is negligible enough that we often do not need time-consum-
ing imputation, and imputation rarely gives us sufficiently
precise estimates of missing species’ ED scores anyway. We
suggest that, given we do not have the resources to save
everything, we should consider focusing our efforts on those
species whose ED scores we can know with greater cer-
tainty: those for which we have data.
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